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Singularity spectra of rough growing surfaces from wavelet analysis

M. Ahr* and M. Biehl
Institut für Theoretische Physik, Julius-Maximilians-Universita¨t Würzburg, Am Hubland, 97074 Wu¨rzburg, Germany

~Received 13 January 2000!

We apply thewavelet transform modulus maximamethod@A. Arnéodo, N. Decoster, and S. G. Roux, Phys.
Rev. Lett.83, 1255~1999!# to the analysis of simulated surfaces grown by molecular-beam epitaxy. In contrast
to the structure function approach commonly used in the literature, this method permits an investigation of the
complete singularity spectrum. We focus on a kinetic Monte Carlo model with Arrhenius dynamics, which in
particular takes into consideration the process of thermally activated desorption of particles. We find a wide
spectrum of Ho¨lder exponents, which reflects the multiaffine surface morphology. Although our choice of
parameters yields small desorption rates (,3%), weobserve a dramatic change in the singularity spectrum,
which is shifted toward smaller Ho¨lder exponents. Our results offer a mathematical foundation of anomalous
scaling: We identify the global exponentag with the Hölder exponent that maximizes the singularity spectrum.

PACS number~s!: 64.60.Ht, 05.40.2a, 05.70.Ln, 81.10.Aj
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I. INTRODUCTION

Inspired by the great technological importance of epit
ial crystal growth, the past decade has seen much theore
research in the subject of kinetic roughening of surfaces d
ing growth. The investigation of this effect, which is und
sirable in practical applications, promises deep insight i
statistical physics far from thermal equilibrium~see, e.g.,@1#
for an overview!. We focus on a full-diffusion Monte Carlo
model of homoepitaxial growth of a hypothetical mater
with simple cubic lattice structure under solid on solid co
ditions, i.e., the effects of overhangs and displacements
neglected. Then, the crystal can be described by a t
dimensional array of integers that denote the heightf (xW ) of
the surface. On each site, new particles are deposited w
rater a . Particles on the surface hop to nearest neighbor s
with Arrhenius ratesn0 exp@2(Eb1nEn)/(kbT)#, where Eb
andEn are the binding energies of a particle to the substr
and to itsn nearest neighbors,n0 is the attempt frequency
andkbT has its usual meaning. In contrast to earlier inve
gations of similar models@2#, we permit the desorption o
particles from the surface with ratesn0 exp@2(Ed
1nEn)/(kbT)#, whereEd.Eb .

The aim of this publication is twofold: We will first dis
cuss the advantages of the wavelet analysis compared t
structure function~SF! approach, which has to date been t
only approach used in the investigation of multiaffine s
faces. Then we will apply this formalism to investigate t
influence of desorption on kinetic roughening. We conclu
with some remarks on the relevance of universality clas
for our results.

II. SCALING CONCEPTS

The standard approach of dynamic scaling@1# assumes
that the statistical properties of a growing surface bef
saturation remain invariant under a simultanous transfor
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tion of spatial extensionxW , height f (xW ), and timet,

xW→bxW5xW8; f→ba f 5 f 8; t→bzt5t8; ~1!

whereb is an arbitrary positive constant. This implies that
part of the surface smaller than the correlation lengthj(t)
;t1/z can be regarded as self-affine with Hurst exponenta.
A popular method of measuringa uses height-height corre
lation functions of~theoretically! arbitrary orderq:

G~q, lW,t !ª^u f ~xW ,t !2 f ~xW1 lW,t !uq&xW; l qag„l /j~ t !…, ~2!

whereg(x)→const forx→0 andg(x)→const3x2qa for x
→`. In practice,q52 is the most common choice.

In principle, there are two different ways to measurea.
The local approach determinesa from the initial slope
of ln@G(q,lW,t)# versus ln(l) for small l. The global
approach analyzes the dependence of the surface widtw

5AŠ@ f (xW ,t)2^ f (xW ,t)&#2
‹xW in the saturation regime on th

system sizeN:wsat(N);Nag. Before saturation, the surfac
width increases likew;tb, whereb5a/z. An alternative
that avoids the simulation of different system sizes uses
complete functional dependence of Eq.~2!: ag and z are
chosen such that the curves ofG(2,lW,t)/ l 2ag versus
l /t1/z collapse on a unique functiong within a large range of
t and l.

However, a careful analysis of simulation data@3–5,2#
has shown that several models of epitaxial growth show
nificant deviations from this simple picture. First, one o
tains different values ofa from the local than from the glo-
bal approach, a phenomenon that is called anoma
scaling. Second, one often finds multiscaling: height-hei
correlation functions of different order yield a hierarchy
q-dependent exponentsa(q), when determined from the ini
tial power-law behavior ofG(q, lW,t).

These observations can be interpreted within the ma
ematical framework of multifractality. The Ho¨lder exponent
@6,1,7,8# h(xW0) of a functionf at xW0 is defined as the larges
exponent such that there exists a polynomial of orden
1773 ©2000 The American Physical Society
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1774 PRE 62M. AHR AND M. BIEHL
,h(xW0) and a constantC which yield u f (xW )2Pn(xW2xW0)u

<CuxW2xW0uh(xW0) in the neighborhood ofxW0. The Hölder ex-
ponent is a local counterpart of the Hurst exponent: a s

affine function with Hurst exponenta hash(xW )5a every-
where. However, in the case of a multiaffine functi

different pointsxW might be characterized by different Ho¨lder
exponents. This general case is characterized by the si
larity spectrumD(h), which denotes the Hausdorff dimen
sion of the set of points whereh is the Hölder exponent off.

III. WAVELET APPROACH TO MULTIFRACTALITY

There is a deep analogy between multifractality and th
modynamics@1,9,10#, where the scaling exponents play th
role of energy, the singularity spectrum corresponds to
tropy, andq plays the role of inverse temperature. So the
retically D(h) might be calculated via a Legendre transfo
of a(q):D(h)5minq„qh2qa(q)12… @6–8#, a method that
has been called the structure function approach. Howeve
practical application raises fundamental difficulties. First,
obtain the complete singularity spectrum, one needsa(q) for

positive and negativeq. But as u f (xW ,t)2 f (xW1 lW,t)u might

become zero,G(q,xW ,t) is in principle undefined forq,0.
Therefore, only the left, ascending part ofD(h) is accessible
to this method. Additionally, the results of the SF meth

can easily be corrupted by polynomial trends inf (xW ) @7#. It
might be due to these difficulties, that—to o
knowledge—no attempt to determine the singularity sp
trum of growing surfaces froma(q) has ever been made
Although it has been argued that thea(q) collapse onto a
single a in the limit t→`, which characterizes the
asymptotic universality class of the model@2,5,11#, we are
convinced that deeper insight into fractal growth on expe
mentally relevant finite time scales can be gained from
detailed knowledge of theD(h) spectrum.

To this end, we follow the strategy suggested by Arne´odo
et al. @6,12,7#, which circumvents the problems of the S
approach and permits a reliable measurement of the c
plete D(h). Mathematically, the wavelet transform of
function f (xW ) of two variables is defined as its convolutio
with the complex conjugate of the waveletc, which is di-
lated with the scalea and rotated by an angleu @12#:

Tc@ f #~bW ,u,a!5Cc
21/2a22E d2x c* „a21R2u~xW2bW !…f ~xW !.

~3!

Here Ru is the usual two-dimensional rotation matrix, an
Cc5(2p)2*d2kukW u22uĉ(kW )u2 is a normalization constant
whose existence requires square integrability of the wav
c(xW ) in Fourier space. Apart from this constraint, the wav
let can ~in principle! be an arbitrary complex valued func
tion. Introducing the waveletcd(xW )5d(xW )2d(xW1nW ), where
nW is an arbitrary unit vector, one easily obtains
f-

u-

r-

n-
-

its

-

i-
a

-

et
-

Tcd
@ f #~bW ,u,a!5Ccd

21/2@ f ~bW !2 f ~bW 1aRunW !#

⇒E d2buTcd
@ f #~bW ,u,a!uq}G~q,aRunW !.

~4!

Consequently, a calculation of the moments of the wave
transform of the surface yields the SF approach as a spe
case. To avoid its weaknesses, two major improvements
necessary.

First, we use a class of wavelets with a greater numbe
vanishing momentsnCW thancd(xW ). This increases the rang
of accessible Ho¨lder exponents and improves the insensit
ity to polynomial trends in f (xW ). We introduce a two-
component version of the wavelet transform,

TW CW @ f #~bW ,a!5
1

a2E d2xS C1„a
21~xW2bW !…

C2„a
21~xW2bW !…

D f ~xW !, ~5!

where the analyzing waveletsC1 and C2 are defined as
partial derivatives of a radially symmetrical convolutio
function F(xW ): C1(xW )5]F/]x, C2(xW )5]F/]y. Then
TW CW @ f #(bW ,a) can be written as the gradient off (xW ), smoothed
with a filter F with respect tobW . This definition becomes a
special case of Eq. ~3! when multiplied by nW u
5„cos(u),sin(u)…T, yet allows for an easier numerica
computation.1 For example,F can be a Gaussian, wher
nCW 51, or F1(xW )5(22xW2)exp(2xW 2/2), which has two van-
ishing moments.

Second, the integration overbW in Eq. ~4! is undefined for
q,0, since the wavelet coefficients might become zero. T
basic idea is to replace it with a discrete summation over
appropriate partition of the wavelet transform that obta
nonzero values only, but preserves the relevant informa
on the Hölder regularity of f (xW ). In the following, we will
give a brief outline of the rather involved algorithm and ref
the reader to@6,12,7# for more details and a mathematic
proof. The wavelet transform modulus maxima~WTMM !

are defined as local maxima of the modulusMCW @ f #(bW ,a)
ªuTW CW @ f #(bW ,a)u in the direction ofTW CW @ f #(bW ,a) for fixed a.
These WTMM lie on connected curves, which trace stru
tures of size;a on the surface. The strength of each
characterized by the maximal value ofMCW @ f #(bW ,a) along
the line, the so-called wavelet transform modulus maxi
maximum~WTMMM ! @6#. While proceeding from large to
small a, successively smaller structures are resolved. C
necting the WTMMM at different scales yields the setL of
maxima linesl, which leads to the locations of the singular
ties of f (xW ) in the limit a→0. The partition functions

Z~q,a!5 (
l PL(a)

„sup(bW ,a8)P l ,a8<aMCW @ f #~bW ,a8!…q

;at(q) for a→0 ~6!

1For simplicity, the irrelevant constantCC has been omitted.
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are defined on the subsetL(a) of lines that cross the scalea.
From the analogy between the multifractal formalism a
thermodynamics,D(h) is calculated via a Legendre tran
form of the exponentst(q) that characterize the scaling b
havior of Z(q,a) on small scalesa: D(h)5minq„qh
2t(q)…. Additionally, t(q) itself has a physical meaning fo
someq:2t(0) is the fractal dimension of the set of poin
whereh(xW ),`, while the fractal dimension of the surfac
f (xW ) itself equals max„2,12t(1)….

IV. RESULTS

In our simulations, we choose the parametersn0
51012/s, Eb50.9 eV, andEn50.25 eV, and a temperatur
T5450 K. To study the influence of desorption, we consid
three models with different activation energiesEd . In model
A desorption is forbidden, i.e.,Ed5`. Models B and C have
Ed51.1 eV andEd51.0 eV. We simulate the deposition o
23104 monolayers at a growth rate of one monolayer p
second on a lattice ofN3N unit cells using periodic bound
ary conditions, our standard value beingN5512. To check
for finite size effects, we have also simulatedN5256. In all
results presented averages over six independent simul
runs have been performed. Although we have used an o
mized algorithm, these simulations consumed several we
of CPU time on our workstation cluster.

First, we checked our results for artifacts resulting fro
properties of the analyzing wavelet rather than from the a
lyzed surface by using different convolution functio
Fn : F0 is the Gaussian function,Fn ,n>1 are products of
Gaussians and polynomials, which have been chosen
that the firstn moments vanish. Then the analyzing wavel
havenCW n

5n11 vanishing moments. We find@Fig. 1~a!# that

the t(q) curve obtained withF0 deviates significantly from
those obtained withF1 , F2, andF3. The latter agree apar
from small differences that are mainly due to the discr
sampling of the wavelet in the numerical implementation
the algorithm. This is explained by the theoretical result@8#
thatdt(q)/dq5nCW for q,qcrit,0 if the number of vanish-
ing moments of the analyzing wavelet is too small. Con
quently, the agreement of the other curves proves t
physical relevance.

Figure 1~b! shows averages oft(q) curves obtained with
the convolution functionsF1 , F2, and F3 from surfaces
after 23104 s of growth on an initially flat substrate. For a
our models, their nonlinear behavior reflects the multiaffi
surface morphology. From the fact that these curves are
produced within statistical errors in simulations withN
5256, we conclude that finite size effects can be neglec
Clearly, desorption reduces the slope oft(q), although only
a small fraction of the incoming particles is desorbed: 0.1
in model B and 2.57% in model C with slightly higher va
ues at earlier times. The corresponding singularity spe
are shown in Fig. 2~a!. They have a typical shape whos
descending part seems to be symmetrical with the ascen
part and which changes at most slightly, while the wh
spectra are shifted toward smaller Ho¨lder exponents as de
sorption becomes more important. We emphasize that
find no evidence for a time dependence of the singula
spectra within the range 9700<t<23104 s, so that our re-
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sults do not support the idea of an asymptotic regime ch
acterized by a single exponenta. However, the accessibl
time range of computer simulations is limited, so that w
cannot finally disprove the existence of such a regime.

The multifractal formalism has replaced the unique sc
ing exponenta of spatial extension in the simple picture o
dynamic scaling@Eq. ~1!# with a wide spectrum of Ho¨lder
exponents. By analogy, one might find it necessary to rep
the scaling exponentb with a distribution of temporal coun
terparts ofh. To answer this question, we investigate t
probability distribution function~PDF! P( f 2^ f &,t) of sur-
face heights. Dynamical scale invariance with a singleb
demands that

P~ f 2^ f &,t !5 P̃S f 2^ f &

tb D 1

tb
, ~7!

i.e., the rescaled PDFsPtb should collapse onto a singl
function P̃ when plotted as a function of (f 2^ f &)/tb within
a large time range.

We measureb from the increase of the surface width wit
time, which follows a power law fort>150 s in models
A and B (bA50.1960.01,bB50.1760.01) respectively

FIG. 1. ~a! t(q) in the Ed5` model as obtained from investi
gations with different wavelets. Note the deviations of the d
obtained with the Gaussian functionF0. ~b! t(q) for models with
different activation energiesEd of desorption. All data have bee
obtained from surfaces after 23104 s of simulated time. Sizes o
error bars are on the order of symbol sizes.
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150,t,7500 s in model C (bC50.1160.01), which then
starts to approach the final saturation regime. The high q
ity of the data collapse of the PDFs shown in Fig. 2~b!
proves that the scaling form~7! holds, showing that a single
exponent describes the scaling behavior ofP( f 2^ f &,t). This
parallels the finding of Krug in@4# for the one-dimensiona
Das Sarma–Tamborenea model.

Finally, the WTMM method, which is a precise tool t
investigate local scaling properties of surfaces, might help
get some insight into the phenomenon of anomalous sca
The conventional picture@13–15# notes the difference be
tween the globalag and a ‘‘locala ’’ that is determined from
the power-law behavior ofG(2,lW,t) for small l, and, within
the multifractal formalism, simply corresponds to a Ho¨lder
exponent on the ascending part of the singularity spectr
We have determined the global scaling exponentsag and z
from the data collapse of the scaled height-height correla
functionG(2,lW,t) and find agreement within statistical erro
betweenag and that value of the Ho¨lder exponenthm which
maxmizesD(h) ~Table I!. This empirical result can be ex
plained with a saddle-point argument. We calculate the s
face width

FIG. 2. ~a! Singularity spectra obtained from a Legendre tra
form of the data in Fig. 1~b!. ~b! Data collape of rescaled PDFs o
surface heights for times between 150 and 23104 s ~model A! and
150 and 7500 s~model C!. We have usedb50.188 for model A
with Ed5` and b50.109 for model C (Ed51.0 eV). Time is
measured in seconds.
l-

to
g.

.

n

r-

w25
1

N2E d2x@ f ~xW !2^ f &#2

5
1

N2E dh̃E d2x d„h̃2h~xW !…@ f ~xW !2^ f &#2 . ~8!

Since the last integral@ I (h̃)# grows likeND(h̃) with the sys-

tem size, in large systems the integral overh̃ will be domi-
nated byI (hm). That means thatw and therefore the globa
scaling properties of the surface are governed by the su
of points that has the greatest fractal dimension. Con
quently, the surface will behave like a self-affine surfa
with Hurst exponenthm on length scales comparable to th
system size.

V. CONCLUSIONS

Table I summarizes our results. Model A without deso
tion recalls the results in@2#, which were obtained with
slightly different activation energies on smaller systems a
shorter time scales. Models B and C show that desorptio
an important process, which, although it affects only a sm
fraction of the adsorbed particles, must not be neglec
since it alters the scaling properties of the surfaces by red
ing b and by shifting the singularity spectrum toward smal
Hölder exponents. Since the scaling behavior depe
strongly on the height of the energy barrier of desorptio
and the singularity spectra have no measurable tendenc
narrow with time, our results cannot be used to make a
decision about the aymptotic universality class of the inv
tigated model. However, they show that the paradigm o
few universality classes characterized by a small numbe
exponents that are independent of details of the model is
adequate to describe the features of kinetic roughening
experimentally relevant time scales of a few hours of grow

We are convinced that the application of mathemati
tools like the wavelet analysis will help find a better descr
tion of fractal growth phenomena in the future.
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TABLE I. Simulation results:pd is the fraction of particles tha
desorbs,b is the scaling exponent of the PDF of surface heights,hm

is the Hölder exponent that maximizesD(h), ag and zg are the

global scaling exponents ofG(2,lW,t), andD f is the fractal dimen-
sion of the surface.

Model pd b hm ag zg D f

A 0 0.1960.01 0.5460.01 0.55 2.9 2.3260.01
B 0.18% 0.1760.01 0.5260.01 0.51 3.3 2.3560.01
C 2.57% 0.1160.01 0.3860.01 0.39 3.5 2.4560.02



d

a

r.

n

ys.

E

PRE 62 1777SINGULARITY SPECTRA OF ROUGH GROWING . . .
@1# A.-L. Barabási and H. E. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, Cambridge, Englan
1995!.

@2# S. Das Sarma, C. J. Lanczycki, R. Kotlyar, and S. V. Ghais
Phys. Rev. E53, 359 ~1996!.

@3# A.-L. Barbási, R. Bourbonnais, M. Jensen, J. Kerte´sz, T.
Vicsek, and Y.-C. Zhang, Phys. Rev. A45, R6951~1992!.

@4# J. Krug, Phys. Rev. Lett.72, 2907~1994!.
@5# S. Das Sarma and P. Punyindu, Phys. Rev. E55, 5361~1997!.
@6# A. Arnéodo, N. Decoster, and S. G. Roux, Phys. Rev. Lett.83,
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