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Singularity spectra of rough growing surfaces from wavelet analysis
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We apply thewavelet transform modulus maximaethod[A. Arnéodo, N. Decoster, and S. G. Roux, Phys.
Rev. Lett.83, 1255(1999 ] to the analysis of simulated surfaces grown by molecular-beam epitaxy. In contrast
to the structure function approach commonly used in the literature, this method permits an investigation of the
complete singularity spectrum. We focus on a kinetic Monte Carlo model with Arrhenius dynamics, which in
particular takes into consideration the process of thermally activated desorption of particles. We find a wide
spectrum of Hader exponents, which reflects the multiaffine surface morphology. Although our choice of
parameters yields small desorption rates3@o), weobserve a dramatic change in the singularity spectrum,
which is shifted toward smaller Haer exponents. Our results offer a mathematical foundation of anomalous
scaling: We identify the global exponem with the Hdder exponent that maximizes the singularity spectrum.
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I INTRODUCTION tion of spatial extension, heightf(x), and timet,
Inspired by the great technological importance of epitax- t—bx=x"" f—b*f=f" t—bi=t'" 1)
ial crystal growth, the past decade has seen much theoretical ’ ' '
research in the subject of kinetic roughening of surfaces durwhereb is an arbitrary positive constant. This implies that a
ing growth. The investigation of this effect, which is unde- part of the surface smaller than the correlation length
sirable in practical applications, promises deep insight into-t? can be regarded as self-affine with Hurst exponent
statistical physics far from thermal equilibriufsee, e.g.[1] A popular method of measuring uses height-height corre-
for an overview. We focus on a full-diffusion Monte Carlo |ation functions of(theoretically arbitrary order:
model of homoepitaxial growth of a hypothetical material
with simple cubic lattice structure under solid on solid con- G(q,1,t) :=(f(x,t) = F(x+ 1) | D~ 199g 1/ &(1), (2)
ditions, i.e., the effects of overhangs and displacements are
neglected. Then, the crystal can be described by a twowhereg(x)— const forx—0 andg(x)— constxx~ 9 for x
dimensional array of integers that denote the hefgi) of ~ —- In practice,q=2 is the most common choice.
the surface. On each site, new particles are deposited with a [N Principle, there are two different ways to measare
rater ,. Particles on the surface hop to nearest neighbor site5"€ local approach determines from the initial slope
with Arrhenius ratesvy exd —(E,+nE)/(k,T)], where E,  of In[G(q,l,t)] versus Inf) for small I. The global
andE, are the binding energies of a particle to the substrat@pproach analyzes the dependence of the surface width
and to itsn nearest neighborsy, is the attempt frequency, = \/([f(iyt)_<f(§,t)>]2>§ in the saturation regime on the
andk,T has its usual meaning. In contrast to earlier investi-system sizeN:w,,(N)~N®. Before saturation, the surface
gations of similar model$2], we permit the desorption of width increases likev~t?, where 8= a/z. An alternative
particles from the surface with ratesjoexd—(Ey  that avoids the simulation of different system sizes uses the
+nE)/(k,T)], whereEy>Ey, . complete functional dependence of B®): a4 and z are
The aim of this publication is twofold: We will first dis- ., osen such that the curves @B (2.0,1)/12% versus
cuss the advantages of the wavelet analysis compared to tfpﬁl/z collapse on a unique functicgnwithir'I ,a large range of
structure function(SH approach, which has to date been thet andl.
only approach used in the investigation of multiaffine sur- However, a careful analysis of simulation dd@-5,7)
faces. Then we will apply this formalism to investigate they, ¢ shown that several models of epitaxial growth show sig-
influence of desorption on kinetic roughening. We conclude,iicant deviations from this simple picture. First, one ob-
with some remarks on the relevance of universality classeg,is different values of from the local than from 1[he glo-
for our results. bal approach, a phenomenon that is called anomalous
scaling. Second, one often finds multiscaling: height-height
Il. SCALING CONCEPTS correlation functions of different order yield a hierarchy of

The standard approach of dynamic scal[ig assumes g-dependent exponenigq), when determined from the ini-

that the statistical properties of a growing surface befordial power-law behavior oG(q,r,F). o
saturation remain invariant under a simultanous transforma- These observations can be interpreted within the math-
ematical framework of multifractality. The Haer exponent
[6,1,7.8 h(x,) of a functionf at x, is defined as the largest
*Email address: ahr@physik.uni-wuerzburg.de exponent such that there exists a polynomial of order
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<h(%) and a constanC which yield |f(x) = P(X—Xo)|
<C|x—xo|"™ in the neighborhood of,. The Hdder ex-

ponent is a local counterpart of the Hurst exponent: a self-

affine function with Hurst exponent has h(§)=a every-
where. However, in the case of a multiaffine function

different pointsx might be characterized by different Hder
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T,,[f1(b,6,2)=C, Y f(b)~f(b+aRyn)]

:f d®b| T, [f1(b,6,a)|%<G(q,aR,n).

(4)

Consequently, a calculation of the moments of the wavelet

exponents. This general case is characterized by the singHxnsform of the surface yields the SF approach as a special

larity spectrumD (h), which denotes the Hausdorff dimen-
sion of the set of points whelis the Hdder exponent of.

Ill. WAVELET APPROACH TO MULTIFRACTALITY

case. To avoid its weaknesses, two major improvements are
necessary.
First, we use a class of wavelets with a greater number of

vanishing momentsy than i s(x). This increases the range
of accessible Hder exponents and improves the insensitiv-

There is a deep analogy between multifractality and therity to polynomial trends inf(x). We introduce a two-

modynamicq1,9,10, where the scaling exponents play the

role of energy, the singularity spectrum corresponds to en-
tropy, andq plays the role of inverse temperature. So theo-
retically D (h) might be calculated via a Legendre transform

of a(q):D(h)=miny,(qdh—qa(q)+2) [6-8], a method that

component version of the wavelet transform,

¥, (a Y(x—b))
W@ Y(x—b))

N - 1 N
Tq',[f](b,a):;J d?x )f(x), (5)

has been called the structure function approach. However, itghere the analyzing waveletd; and ¥, are defined as
practical application raises fundamental difficulties. First, topartial derivatives of a radially symmetrical convolution

obtain the complete singularity spectrum, one neegp for
positive and negativeq. But as|f(x,t)—f(x+1,t)| might
become zeroG(q,i,t) is in principle undefined fog<O0.
Therefore, only the left, ascending part®th) is accessible

function ®(X): W,(x)=aD/ox, ¥o(X)=3dD/dy. Then
T[f](b,a) can be written as the gradient ffx), smoothed
with a filter & with respect tob. This definition becomes a
special case of Eq.(3) when multiplied by n,

to this method. Additionally, the results of the SF methOdz(cos(B),sin(a))T, yet allows for an easier numerical

can easily be corrupted by polynomial trendsf {x) [7]. It
might be due to these difficulties, that—to our

computationt For example,® can be a Gaussian, where
ng=1, ord,(x)=(2—x2)exp(-x%2), which has two van-

knowledge—no attempt to determine the singularity specishing moments.

trum of growing surfaces fronw(q) has ever been made.
Although it has been argued that th€q) collapse onto a
single @ in the limit t—o, which characterizes the
asymptotic universality class of the mod@,5,11, we are

Second, the integration overin Eq. (4) is undefined for
<0, since the wavelet coefficients might become zero. The
basic idea is to replace it with a discrete summation over an
appropriate partition of the wavelet transform that obtains

convinced that deeper insight into fractal growth on experinonzero values only, but preserves the relevant information
mentally relevant finite time scales can be gained from g, the Hader regularity off(i). In the following, we will

detailed knowledge of thB(h) spectrum.
To this end, we follow the strategy suggested by At
et al. [6,12,7, which circumvents the problems of the SF

give a brief outline of the rather involved algorithm and refer
the reader td6,12,7 for more details and a mathematical
proof. The wavelet transform modulus maxinff& TMM)

approach and permits a reliable measurement of the conye defined as local maxima of the moduls;[ f](b,a)

plete D(h). Mathematically, the wavelet transform of a

function f(x) of two variables is defined as its convolution
with the complex conjugate of the wavelgt which is di-
lated with the scal@ and rotated by an anglé [12]:

Tw[f](B,e,a)zc;l’zafzf d?x * (@ 'R_ 4(x—b))f(X).
3

Here R, is the usual two-dimensional rotation matrix, and
C,=(2m)2[d?k|k|~2|¢(k)|? is a normalization constant,

whose existence requires square integrability of the wavelet
() in Fourier space. Apart from this constraint, the wave-

let can(in principle) be an arbitrary complex valued func-
tion. Introducing the wavelap s(x) = 8(x) — 8(x+n), where
nis an arbitrary unit vector, one easily obtains

:=|Tg[f](b,a)| in the direction ofT4[f](b,a) for fixed a.
These WTMM lie on connected curves, which trace struc-
tures of size~a on the surface. The strength of each is
characterized by the maximal value bf[f](b,a) along

the line, the so-called wavelet transform modulus maxima
maximum (WTMMM) [6]. While proceeding from large to
small a, successively smaller structures are resolved. Con-
necting the WTMMM at different scales yields the g&bf
maxima lined, which leads to the locations of the singulari-

ties off(i) in the limit a— 0. The partition functions

Z(q,a)= 2,

(SURb.a'y 1.2 =<aM[ F1(D,a"))d
I eL(a)

~a™@ for a—0

(6

IFor simplicity, the irrelevant constafity has been omitted.
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are defined on the subséfa) of lines that cross the scate o T T T T T T T R ]
From the analogy between the multifractal formalism and @ ¢ ¥ é
thermodynamicsD (h) is calculated via a Legendre trans- —1r o !
form of the exponents(q) that characterize the scaling be- o
havior of Z(q,a) on small scalesa: D(h)=ming(gh —2r ¢ *
—7(q)). Additionally, 7(q) itself has a physical meaning for _ . 8
someq: — 7(0) is the fractal dimension of the set of points Z-3t 8
where h(§)<oo, while the fractal dimension of the surface g :
f(X) itself equals mag2,1— r(1)). R 1
S ! o D,
_5_ + < (I)3
IV. RESULTS +
In our simulations, we choose the parameterg 54 3 2 1 0 1 2 3 4 5
=10'%s, E,=0.9 eV, andE,=0.25 eV, and a temperature !
T=450 K. To study the influence of desorption, we consider o
three models with different activation energieg. In model (b) g ¥ i
A desorption is forbidden, i.eE4=c. Models B and C have s 5oe
Es=1.1 eV andEy=1.0 eV. We simulate the deposition of -1r £ o °
2% 10* monolayers at a growth rate of one monolayer per 5 g °
second on a lattice dfi X N unit cells using periodic bound- ol e °
ary conditions, our standard value beiNg=512. To check = .2
for finite size effects, we have also simulafeer 256. In all = o x
results presented averages over six independent simulation -3r o ¥
runs have been performed. Although we have used an opti- 0 * + Ei=oo
mized algorithm, these simulations consumed several weeks al o s ~ E.=1.1€eV
of CPU time on our workstation cluster. x o E«=1.0eV
First, we checked our results for artifacts resulting from 3
properties of the analyzing wavelet rather than from the ana- -5 e .
; . . . 5 4 -3 2 -1 0 1 2 3 4 5
lyzed surface by using different convolution functions q

®,: @, is the Gaussian functiorp,,,n=1 are products of _ _ _ _

Gaussians and polynomials, which have been chosen such FIG. 1. (&) 7(q) in the E4=> model as obtained from investi-

that the firsh moments vanish. Then the analyzing waveletsgations with different wavelets. Note the deviations of the data
n

the curve obtained withb. deviates sianificantlv from different activation energieg, of desorption. All data have been
h T(q)b u. v d wi I&D q)WI Od(pVI ThS |5|g I y obtained from surfaces after2L0* s of simulated time. Sizes of
those o tame,‘ witlb,, &5, an 3 e latter agree a}part error bars are on the order of symbol sizes.

from small differences that are mainly due to the discrete

sampling of the wavelet in the numerical implementation of

the algorithm. This is explained by the theoretical re§8lt iarized by a single exponent However, the accessible

thatdr(q)/dg=ny for q<qc;<0 if the number of vanish- e range “of computer simulations is limited, so that we

ing moments of the analyzing wavelet is too small. Consetannot finally disprove the existence of such a regime.

quently, the agreement of the other curves proves their tnhe mytifractal formalism has replaced the unique scal-
phyglcal relevance. . , ing exponenta of spatial extension in the simple picture of
Figure 1b) shows averages af(q) curves obtained with gy namic scalingEq. (1)] with a wide spectrum of Fder

the convolution functionsp,, ®,, and @5 from surfaces  gynonents. By analogy, one might find it necessary to replace
after 2x 10* s of_growth on an |n|t|a_1lly flat substrate. Fc_)r 61_” the scaling exponeng with a distribution of temporal coun-
our models, their nonlinear behavior reflects the multlafflneterparts ofh. To answer this question, we investigate the
surface morphology. From the fact that these curves are r‘?)'robability distribution functionPDP) P(f—(f}),t) of sur-

produced within statistical errors in simulations with o heights. Dynamical scale invariance with a single
=256, we conclude that finite size effects can be neglecteqomands that

Clearly, desorption reduces the sloper6€), although only

sults do not support the idea of an asymptotic regime char-

a small fraction of the incoming particles is desorbed: 0.18% f—(f)) 1
in model B and 2.57% in model C with slightly higher val- P(f—<f>,t):|5 >—, (7)
ues at earlier times. The corresponding singularity spectra th JtP

are shown in Fig. @). They have a typical shape whose )
descending part seems to be symmetrical with the ascendirig-» the rescaled PDFBt® should collapse onto a single
part and which changes at most slightly, while the wholefunction P when plotted as a function of ¢ (f))/t# within
spectra are shifted toward smaller |Her exponents as de- a large time range.

sorption becomes more important. We emphasize that we We measurgd from the increase of the surface width with
find no evidence for a time dependence of the singularittime, which follows a power law fot=150 s in models
spectra within the range 9760<2x10* s, so that our re- A and B (8,=0.19+0.01,8;=0.17+0.01) respectively
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1.9 : : g TABLE I. Simulation resultspy is the fraction of particles that
(a) e desorbsg is the scaling exponent of the PDF of surface heighgs,
Lak Qoo < F %*; is the Hdder exponent that maximizeB(h), ay and z, are the
. o 9 .

e} +
x [ x +
L7} £ )

global scaling exponents G(Z,r,t), andDgs is the fractal dimen-
sion of the surface.

S o J[’_ ' Model  pg B A ag  Z4 D¢
a
Lef o . N A 0 0.19-0.01 0.54-0.01 055 29 2.320.01
5 * B 0.18% 0.1#0.01 0.52:0.01 0.51 3.3 2.350.01
o + 4= o0
L5k ° . « Ba 116V C 257% 0.1*0.01 0.38:0.01 0.39 3.5 2.450.02
o Ei=1.0eV
1'6.2 013 014 0:5 016 0.‘7 0.8
h 2 1 2 v 2
2= | d(1(X) ()]
0.8 T T T ‘ N
()
0.7+ + Ei=o0 % 1 - 5 - R N 5
o E.=1.0eV =—1 dh d*x sth—h(x)[f(x)—(f)]*. (8
0.6r g 1 N
i

=0.5" gé&f
F

V04 Since the last integrdll ()] grows like N°™ with the sys-

tem size, in large systems the integral otiewill be domi-
nated byl (h,,). That means thawv and therefore the global
scaling properties of the surface are governed by the subset
of points that has the greatest fractal dimension. Conse-
quently, the surface will behave like a self-affine surface
with Hurst exponenh,, on length scales comparable to the
system size.

x0.3r

: %%%

(f—<f>)/t

FIG. 2. (a) Singularity spectra obtained from a Legendre trans-
form of the data in Fig. (b). (b) Data collape of rescaled PDFs of
surface heights for times between 150 and1®* s (model A and
150 and 7500 $model Q. We have useg=0.188 for model A
with E4=« and 8=0.109 for model C E4=1.0 eV). Time is
measured in seconds.

V. CONCLUSIONS

Table | summarizes our results. Model A without desorp-
tion recalls the results 2], which were obtained with
slightly different activation energies on smaller systems and
shorter time scales. Models B and C show that desorption is
an important process, which, although it affects only a small
150<t<7500 s in model C §-=0.11+0.01), which then fraction of the adsorbed particles, must not be neglected,
starts to approach the final saturation regime. The high quakince it alters the scaling properties of the surfaces by reduc-
ity of the data collapse of the PDFs shown in Fidgb)2 ing 8 and by shifting the singularity spectrum toward smaller
proves that the scaling forifY) holds, showing that a single Holder exponents. Since the scaling behavior depends
exponent describes the scaling behavioP¢f—(f),t). This  strongly on the height of the energy barrier of desorption,
parallels the finding of Krug 4] for the one-dimensional and the singularity spectra have no measurable tendency to
Das Sarma—Tamborenea model. narrow with time, our results cannot be used to make any

Finally, the WTMM method, which is a precise tool to decision about the aymptotic universality class of the inves-
investigate local scaling properties of surfaces, might help tdigated model. However, they show that the paradigm of a
get some insight into the phenomenon of anomalous scalindeW universality classes characterized by a small number of
The conventional picturgl3—15 notes the difference be- exponents that arellndependent of detal!s of the mode[ is not
tween the global, and a “locala” that is determined from adeqqate to describe th_e features of kinetic roughening on
the power-law beghavior oB(2 [ t) for smalll, and, within experimentally rglevant time scales (_)f a_few hours of grovyth.
the multifractal formalism sir'nbly correspor;ds t(; & ity We are convinced that the application of mathematical

! ) . tools like the wavelet analysis will help find a better descrip-
exponent on the ascending part of the singularity spectru

We have determined the global scaling exponentsand z "lion of fractal growth phenomena in the future.
from the data collapse of the scaled height-height correlation

functionG(2,I,t) and find agreement within statistical errors
betweenay and that value of the Hder exponenh,,, which ) )
maxmizesD (h) (Table ). This empirical result can be ex- We thank A. Arnedo and J. M. Lpez for providing us
plained with a saddle-point argument. We calculate the surrecent manuscripts before publication and A. Freking for a
face width critical reading of the manuscript.
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